Electron Configurations of Ions

Atoms form ions when they gain or lose electrons.

Electronic structures of Cations

A cation (positively charged ion) forms when one or more electrons are removed from a parent atom. When forming a cation, an atom of a main group element tends to lose all of its valence electrons. This results in the atom becoming isoelectronic with the previous noble gas in the periodic table. In groups 1 (the alkali metals) and 2 (the alkaline earth metals), the group numbers equal the numbers of valence shell electrons. This also corresponds to the charges of the cations formed from these elements lose all their valence shell electrons. 

For example, calcium is a group 2 element whose neutral atoms have 20 electrons and a ground-state electron configuration of 1s22s22p63s23p64s2. When a Ca atom loses both of its valence electrons, the result is a cation with 18 electrons, a 2+ charge, and an electron configuration of 1s22s22p63s23p6. The Ca2+ ion is therefore isoelectronic with the noble gas Ar.

For groups 13–17, the group numbers exceed the number of valence electrons by 10 (accounting for the possibility of full d subshells in atoms of elements in the fourth and greater periods). Thus, the charge of a cation formed by the loss of all valence electrons is equal to the group number minus 10. For example, aluminum (in group 13) forms 3+ ions (Al3+).


As always, there are exceptions. Click here to learn more!

Exceptions to the expected behavior involve elements toward the bottom of the groups. In addition to the expected ions Tl3+, Sn4+, Pb4+, and Bi5+, a partial loss of these atoms’ valence shell electrons can also lead to the formation of Tl+, Sn2+, Pb2+, and Bi3+ ions. The formation of these 1+, 2+, and 3+ cations is ascribed to the inert pair effect, which reflects the relatively low energy of the valence s-electron pair for atoms of the heavy elements of groups 13, 14, and 15. Mercury (group 12) also exhibits an unexpected behavior: it forms a diatomic ion, Hg22+ (an ion formed from two mercury atoms, with an Hg-Hg bond), in addition to the expected monatomic ion Hg2+ (formed from only one mercury atom).

Transition and inner transition metal elements behave differently than main group elements. Most transition metal cations have 2+ or 3+ charges that result from the loss of their outermost s electron(s) first, sometimes followed by the loss of one or two d electrons from the next-to-outermost shell.

Click here for an example

For example, iron (1s22s22p63s23p63d64s2) forms the ion Fe2+ (1s22s22p63s23p63d6) by the loss of the 4s electron and the ion Fe3+ (1s22s22p63s23p63d5) by the loss of the 4s electron and one of the 3d electrons. Although the d orbitals of the transition elements are—according to the Aufbau principle—the last to fill when building up electron configurations, the outermost s electrons are the first to be lost when these atoms ionize. When the inner transition metals form ions, they usually have a 3+ charge, resulting from the loss of their outermost s electrons and a d or f electron.

Electronic Structures of Anions

An anion (negatively charged ion) forms when one or more electrons are added to a parent atom. Most monatomic anions form when a neutral nonmetal atom gains enough electrons to completely fill its outer s and p orbitals. This allows the atom to reach the electron configuration of the next noble gas. Thus, determining the charge on such a negative ion is simple: you find the charge by counting the number of electrons needed to fill the s and p orbitals of the parent atom. Oxygen, for example, has the electron configuration 1s22s22p4, whereas the oxygen anion has the electron configuration of the noble gas neon (Ne), 1s22s22p6. The two additional electrons required to fill the valence orbitals give the oxide ion the charge of 2– (O2–).

Predicting Electron Configurations of Ions

What is the electron configuration of:

(a) Na+

(b) P3–

(c) Al2+

(d) Fe2+

(e) Sm3+

Solution
First, write out the electron configuration for each parent atom. We have chosen to show the full, unabbreviated configurations to provide more practice for students who want it. However, listing the core-abbreviated electron configurations is also acceptable.

Next, determine whether the atom gains or loses an electron. Remember that electrons are negatively charged, so ions with a positive charge have lost an electron. For main group elements, the last orbital gains or loses the electron. For transition metals, the last s orbital loses an electron before the d orbitals.

(a) Na: 1s22s22p63s1. Sodium cation loses one electron, so Na+: 1s22s22p63s1 = Na+: 1s22s22p6.

(b) P: 1s22s22p63s23p3. Phosphorus trianion gains three electrons, so P3−: 1s22s22p63s23p6.

(c) Al: 1s22s22p63s23p1. Aluminum dication loses two electrons Al2+: 1s22s22p63s23p1 =

Al2+: 1s22s22p63s1.

(d) Fe: 1s22s22p63s23p64s23d6. Iron(II) loses two electrons and, since it is a transition metal, they are removed from the 4s orbital Fe2+: 1s22s22p63s23p64s23d6 = 1s22s22p63s23p63d6.

(e). Sm: 1s22s22p63s23p64s23d104p65s24d105p66s24f6. Samarium trication loses three electrons. The first two will be lost from the 6s orbital, and the final one is removed from the 4f orbital. Sm3+: 1s22s22p63s23p64s23d104p65s24d105p66s24f6 = 1s22s22p63s23p64s23d104p65s24d105p64f5.

Check Your Learning
Which ion with a +2 charge has the electron configuration 1s22s22p63s23p63d104s24p64d5? Which ion with a +3 charge has this configuration?

Answer:

Tc2+, Ru3+

Key Concepts and Summary

The relative energy of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). Electron configurations and orbital diagrams can be determined by applying the Pauli exclusion principle (no two electrons can have the same set of four quantum numbers) and Hund’s rule (whenever possible, electrons retain unpaired spins in degenerate orbitals).

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group. There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. The periodic table can be divided into three categories based on the orbital in which the last electron to be added is placed: main group elements (s and p orbitals), transition elements (d orbitals), and inner transition elements (f orbitals).