Chapter 5: Collections of Chemical Species

Fruit of the chaulmoogra tree, used to develop a treatment for leprosy. Image credit: Dieter Albrecht on plantnet.org. CC-BY-SA 4.0

Leprosy has been a devastating disease throughout much of human history. Aside from the symptoms and complications of the illness, its social stigma led sufferers to be cast out of communities and isolated in colonies; in some regions this practice lasted well into the twentieth century. At that time, the best potential treatment for leprosy was oil from the chaulmoogra tree, but the oil was extremely thick, causing blisters and making usage painful and ineffective. Healthcare professionals seeking a better application contacted Alice Ball, a young chemist at the University of Hawaii, who had focused her masters thesis on a similar plant. Ball initiated a sequence of procedures (repeated acidification and purification to change the characteristics of the oil and isolate the active substances (esters, discussed later in this text). The “Ball Method” as it later came to be called, became the standard treatment for leprosy for decades. In the liquid and solid states, atomic and molecular interactions are of considerable strength and play an important role in determining a number of physical properties of the substance. For example, the thickness, or viscosity, of the chaulmoogra oil was due to its intermolecular forces. In this chapter, the nature of these interactions and their effects on various physical properties of liquid and solid phases will be examined.

Sections in this chapter: