The previous section described the various contributions of matter and energy dispersal that contribute to the entropy of a system. With these contributions in mind, consider the entropy of a pure, perfectly crystalline solid possessing no kinetic energy (that is, at a temperature of absolute zero, 0 K). This system may be described by a single microstate, as its purity, perfect crystallinity and complete lack of motion means there is but one possible location for each identical atom or molecule comprising the crystal (W = 1). According to the Boltzmann equation, the entropy of this system is zero.
This limiting condition for a system’s entropy represents the third law of thermodynamics: the entropy of a pure, perfect crystalline substance at 0 K is zero.
Careful calorimetric measurements can be made to determine the temperature dependence of a substance’s entropy and to derive absolute entropy values under specific conditions. Standard entropies (S°) are for one mole of substance under standard conditions (a pressure of 1 bar and a temperature of 298.15 K; see details regarding standard conditions in the thermochemistry chapter of this text). The standard entropy change (ΔS°) for a reaction may be computed using standard entropies as shown below:
where ν represents stoichiometric coefficients in the balanced equation representing the process. For example, ΔS° for the following reaction at room temperature
is computed as:
A partial listing of standard entropies is provided in the table below, and additional values are provided in the Appendices. The example exercises that follow demonstrate the use of S° values in calculating standard entropy changes for physical and chemical processes.
Substance | $S^°$ (J mol−1 K−1) |
carbon | |
C(s, graphite) | 5.740 |
C(s, diamond) | 2.38 |
CO(g) | 197.7 |
CO2(g) | 213.8 |
CH4(g) | 186.3 |
C2H4(g) | 219.5 |
C2H6(g) | 229.5 |
CH3OH(l) | 126.8 |
C2H5OH(l) | 160.7 |
hydrogen | |
H2(g) | 130.57 |
H(g) | 114.6 |
H2O(g) | 188.71 |
H2O(l) | 69.91 |
HCI(g) | 186.8 |
H2S(g) | 205.7 |
oxygen | |
O2(g) | 205.03 |
Determination of ΔS°
Calculate the standard entropy change for the following process:
Solution
Calculate the entropy change using standard entropies as shown above:
The value for ΔS° is negative, as expected for this phase transition (condensation), which the previous section discussed.
Check Your Learning
Calculate the standard entropy change for the following process:
Answer:
−120.6 J K–1 mol–1
Determination of ΔS°
Calculate the standard entropy change for the combustion of methanol, CH3OH:
Solution
Calculate the entropy change using standard entropies as shown above:
Check Your Learning
Calculate the standard entropy change for the following reaction:
Answer:
24.7 J K–1 mol–1